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Abstract

Image processing has been gpplied to traffic analyss in recent years, with different gods.
In this report, anew approach is presented for extracting vehicular peed information, given a
sequence of real-time traffic images. We extract moving edges and process the resulting edge
information to obtain quantitative geometric meassurements of vehicles. Thisdiffersfrom
existing gpproaches because we use Smple geometric relations obtained directly from the image
instead of using reference objectsto perform camera calibrations. Our method dlowsthe
recovery of the physica descriptions of traffic scenes without explicit camera cdibration. In this
report, extensve experiments using images from active TM S (Transportation Management
System) freeway cameras are reported. The results presented in this report demonstrate the
vaidity of our gpproach which requires neither direct camera control nor placement of a
cdibration object in the environment. We further argue that it is straightforward to extend our

method to other related traffic gpplications
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1 Introduction

In recent years, image processing has been gpplied to the field of traffic research with
gods that include queue detection, incident detection, vehicle classification, and vehicle counting
[1,2 3 4,56, 7].

Thisreport explicitly recognizes that speed is an important parameter in traffic andyss.
Redatively few efforts have attempted to measure speed by using video images from uncalibrated
cameras. Some preliminary research on pixe speed estimation in images appearsin Soh et d [6]
and Ficton [8]. A review of the literature on physical speed estimation shows that amost dl of
the agorithms involve some man-made reference information. For example, Worrdl et d [9]
describes an interactive tool for performing cameracdibration. In thisinteractive gpplication, an
operator firgt identifies vanishing points from paradle road marks and then places a rectangular
grid on the image for cdibration. Dickinson and Waterfal [10] and Ashworth et d [11] make
gpeed measurements from the known physical distance between two detection windows placed
on the road image. Similarly, severd other papers[12, 13] suggest estimating speed by first
placing two detection lines (separated by a known distance) and then measuring travel times
between the lines. Houkes [14 ] determined four reference points to form a rectangle before
taking the off-line measurements. In that case, the camera had to remain in the same position
during al measurements for the processto be vdid.

In this research, we assumed that we had no control over camera movements and thus
could not directly obtain information such as camerafocus, tilt, or angle. We further assumed
that the camera parameters could change any time without our knowledge. In our project, we
were monitoring congested freeways and had neither the ability nor the authority to set

permanent marks on the road.



We believe ontline cdlibration is a necessary step in using the large, ingdled base of
TMS cameras. We propose that exact calibration is not necessary to estimate speed using our
agorithm; ingtead, we use information inherently avallable in theimage. Wefocusonal-D
geometry for the traffic on the road. Using a car length ditribution from our previous research
[15], we propose anovel method that extracts scaling Sgnatures and computes the speed

digtribution on the basis of the geometric relationships in the image.

1.1 ASSUMPTIONS

To darify the problem presented here, we made several assumptionsin our work:

a) Finite speed [16]: The speed of avehicle has both physicd and legd limits.

b) Movement issmooth [16]: No sudden changes of directions are expected between
frame intervas (330ms).

c) Moation iscongraned to the road plane [17], and thus we are posing camera
cdibration as a 1-D geometry problem.

In this work, we used 320x240 gray-scale images at aframerate of 3 frames per second

(fps). These are demonstrated to be adequate for reliable anadyss, aswel asbeing smdl enough

to dlow efficient processing.

1.2 REPORT OVERVIEW

Our dgorithm for speed extraction first applies a series of operators to Sngle imagesto
create a set of enhanced images. We then use this set of enhanced imagesto create a speed
edimation agorithm. In this report, we first describe the sngle image operations and then
present the overal agorithm as gpplied to a group of images. Chapter 2 introduces mgor
procedures for each singleimage. These consst of a preprocessing step, a moving-edge

detection step, a morphologica operation step, and a convex hull and bounding box extraction



gep. In Chapter 3, we discuss geometric relation analysis, as wdll as distance and speed
edimation agorithms for an image sequence. Chapter 4 presentsthe field trids, experimenta
results, and discussion. In Chapter 5, we present conclusions about the effectiveness of the

agorithm.



2 Single Frame Processing

The single image processing steps are shown in Figure 2.1. These stepsinclude
preprocessing, moving edge detection, morphologica operations, and convex hull and bounding
box extraction. The next section describes details of the pre-processing under the assumptions

presented earlier.

Preprocessing
(Median filtering)

Moving-edge detection

Inter-differencing & Sobel

h

Morphological operation

(dilation & erosion)

h J

Convex Hull & bounding
box extraction

Figure 2.1 Image processing flow for asingleimage
2.1 PREPROCESSING
The traffic images have a noise component from severd interference sources. The types
of noiseinclude the following [18]:
1) Sdt-and-pepper noise, which occurs when an imageis coded and transmitted over a
noisy channel or degraded by dectrical sensor noise, asin video cameras.
2) Convolutiona noise (blurring), which produces images that are degraded by lens mis-

focus, motion, or atmaospheric turbulence, such as adverse weather conditions.



Both noise sources contribute to high-frequency noise components. In our process,
median filtering is used to reduce this high-frequency noise. It preserves the edge information
required by our dgorithm. Edges are akey image fegture, as they remain prominent despite the
vaiationsin the traffic scene sambient lighting. Our median filter uses a 3x3 kerne to remove
high frequency noise from the image.

The 3x3 kernd moves row by row, pixel by pixd. A pixd isregarded asthe center of the
3x3 window. The median vaue of the set of nine pixdsin the 3x3 neighborhood is used asthe
new filtered vaue of the pixd at the center. Thisway, impulse noise with extreme vaues can be
suppressed. Sincethetota areain our processis fixed in advance, locating the median vaueis
fad. Itisthefifth vauein the sorted array [19].

The next section describes the moving edge detection module of our agorithm. The

agorithm uses the images preprocessed by the median filtering just presented.

2.2 M OVING-EDGE DETECTION

Moving edge detection is applied to extract the moving parts from a complex background
in an image sequence. The gatic background is then deleted to locate the moving objects.

2.2.1 Sobel Edge Detector

Let I(i,j) denote the pixel value being processed. Its neighbors are considered to
determine whether it ison an edge or not. Usudly a 3x3 or 5x5 neighbor window is used for one
pixe. Inour work, a3x3 window is used for processing, as shown in the matrix below. For the

pixel I(i,j), the eight neighbors are |, through 1...




The Sobel edge magnitude is computed is[20] as
L@, )= (u* =v*)™", €y
where

u=(l, =21 =) e(l =21, =1 ), 2

v=(21, =1 =) e(l, =21, =), (3
The gradient is computed as

G.(i,j) T tan™(u/v). 4

The above computationa process moves a 3x3 window with the current pixe asthe
window center. After the magnitude is obtained, athreshold can be used to determine which
pixe ison an edge. If the Sobel magnitude is below the threshold, the pixel will be discarded.
This means that the magnitude response is not strong enough to claim an edge point. The
selection of an appropriate threshold is dependent on the content of the images.

An exampleis shown in Figure 2.2. We assart that most of the edges are detected by
Sobel edge detection.

2.2.2 Moving Edge Detection

In previous work by Gil [21], moving objects were segmented from the traffic
background with a motion detection agorithm based on a multi-resolution relaxation. This
resulted in a set of coarse binary masks for each vehicle. A refinement process was then applied
to obtain a more accurate description. In multi-resolution relaxation, both the starting and ending
resolution need to be sdected on the basis of engineering judgment. Fathy and Siyd [2] present

awindow-based edge detection method that combines morphologica edge detectors and a



median filtering. However, their process [2] requires the user to pre-place dl the detection
windows at the key regions across the lanes, and therefore the user needs to have detailed
knowledge of theroad. Kudo [22] applies aone-dimensona gradient operation to a sub-region

with awindow dong the road, which fals into the same category.

Original image

Sobel edge image
Figure 2.2 Sobel edge detection
In this process, we use image differencing to extract motion information. There are two
basic differencing methods in the literature: 1) background differencing and 2) interframe
differencing. In background differencing, a reference frame that contains no moving vehiclesis
subtracted from each frame. In red world applications, where the ambient lighting varies

rapidly, the reference frame needs to be updated regularly to reflect the current background and



to provide reliable segmentation. This reference frame can be obtained by ether grabbing a
frame when no vehicles are presented or by multi-frame accumulation [23]. Severa methods are
suggested by Fathy and Siyd [2] and Koller et dl [17] to update the background image.
However, these methods are dow and computationaly expensive and thus cannot meet red-time
processing requirements. Furthermore, on congested freeways (the domain of interest) it is
difficult to obtain images with no vehicles that match the present light level. Therefore, to
mitigate these problems, we adopt the inter-frame differencing method to eliminate the complex
background and detect the moving vehicles.

Cal [23] used forward and backward image differencing and then extracted common
regions corresponding to the moving aress. Instead of extracting regions, Vieren [24] proposed a
method to combine inter-frame differencing and a differentia operator to extract moving edges.

In our process, we combine inter-frame differencing with the Sobel edge detector to extract the
moving edges. To emphasize the movement Sgnature, we use three sequentid images and
process each image relative to its previous and subsequent images. In thisway, we separate the
movement from the static background.

Our agorithm is gpplied to three images.  the previous tempora image (1,,), the current
image of interest (1,), and the next tempord image (1,,):

Edge_image T Sobel(l, 1l )®sobel(l, 1 ) . (5)

Thet is

1) Take the difference between the previous image | and the current
i mge | .
2) Take the difference between the next inage |, and the current inmage

¢t



3) Sobel edge operators are applied to these two different imges to
get two edge inmages.

4) Conpare the nmagnitudes of all edge pixels in the two edge inages
resulting fromthe Sobel edge operator with a magnitude threshol d.
If the magnitude of a pixel is less than the threshold, then it is
set to be 0. Oherwise, it is set to be 1. This produces two
bi nary edge i mages.

5) Create the intersection of the two binary edge i nages. Extract

conmon novi ng edges present in the original current image, |..

This process produces an edge image for the current image of interest from which we will

extract individua vehicle information in the next chapter.

Figure2.3 A typical sequence

Example images for the above process are shown in Figures 2.3, 2.4, 2.5, and 2.6. Figure

2.3 showsthree origind successive frames in an image sequence. Figure 2.4 shows the edge



image of the difference image between the first two frames. Figure 2.5 shows the edge image of
the difference image between the second and third frames. Figure 2.6 shows the final moving

edgeimage. Almogt dl of the moving edges are extracted successfully.

Figure 2.4 Sobel edgesin the difference image between thefirst two frames

Figure 2.5 Sobel edgesin the difference image between the second and third frames

10



Figure 2.6 Moving edges
2.3 M ORPHOLOGICAL OPERATION TO OBTAIN M OVING BLOBS

In the moving edge image just described, there are dways ggps dong the edges. To
obtain a profile of the vehicle, we need to enhance the moving edges. This enhancement uses the
morphological operators dilation and eroson with an appropriate structural element. The result
of sequentialy applying dilation and erosion [25] isto remove specific image features smaller
than the structurd eement without affecting the large features of interest.

Dilation and eroson are two basic morphologica operations, which will be discussed
fird. Dilaing an object isto trandate dl its points with regard to a structura €ement followed
by union operation. On the other hand, eroding an object isto trandate dl its pointsfirst by
using agructura dement and then to conduct the intersection operation to get the fina result.
Thisway, dilation expands an object and erosion shrinksit by the size of the pecified structura
element.

Images are dilated with the max operation. They are eroded with the min operation. A
gructurd dement of N by N is used to define the max or min operation regions. To process an
image pixd, the region containing the pixel of interest and its (N-1) by (N-1) neighboring pixels

iS processed, and the maximum or the minimum vaue is obtained.

11



That is, for an image matrix with m by n, and agiven dement sze N,

1) sort the pixel values in the N by N nei ghborhood
2) put the maximumin the dilation i mage matri x

3) put the minimumin the erosion image matrix.

Since we are processing binary images, the above sorting process can be smplified to test
whether the pixel valueis1 or 0. Inthisway, the operations are very fad.

The sdlection of the Sze of the structurd dement N depends on the range of the size of
the vehicles of interest and the range of distance between the vehicles. For example, avehicle
smadler than the structural eement in the image will be removed by eroson. On the other hand,
severd vehides close to each other will be merged to a single blob after dilation. While our god
isto extract as many vehicles as possble, we do not require every vehicle in the image to be
identified for our agorithm to accurately estimate speed. Using morphologica operations, some
vehicleswill be removed by eroson because of their smal size in the image (these have been
deemed too smadll to be ussful in speed estimation) or will be merged by dilation because of their
proximity (these have been deemed ingppropriate because of possible occlusion effects).

Figures 2.7 and 2.8 show some morphological examples. Figure 2.7 shows the result of
dilation operation. Different Structura element sizes (3x3 and 4x4) are used. Observe that
dilation with larger szed structurd eements will make some blobs merge together. Figure 2.8
shows erosion operations. Erosion with larger sized structurd ements causes some vehiclesto

disappear from the image.

12



Origina Binary image

After dilation by a 3x3 structural element

After dilation by a4x4 structural element

Figure2.7 Dilation examples
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(2) origina binary image

(2) After erosion by a 3x3 structural element

(3) After erosion by a4x4 structural element

Figure 2.8 Erosion examples
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Figure 2.8 Eroson examples The result of sequentidly applying dilation and erosion
[25] isto remove specific image festures smdler than the Structural dement without affecting the
large features of interest. An exampleis shown in Figure 2.9, where an imageisfirst dilated and

then eroded by the same 3x3 dructurd element.

Origina binary image

After dilation

After erosion

Figure 2.9 Dilation followed by erosion

At this stage, the image of interest has been enhanced to emphasize the moving vehicles

that gppear as blobsin the resulting image.

15
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2.4 VEHICLE PROFILE APPROXIMATION
2.4.1 Convex Hull Extraction

After the gpplication of morphologica operators above, moving edges are filled and
appear as solid moving “blobs” To characterize the blobs, we use a convex hull to approximate
the contour of the vehicles. In many cases, a convex hull isagood gpproximation of the
projection of acar [21, 17].

In the image produced by the procedure in the previous section, the background is full of
0Os, and only points insde and along the contours of the blob are of vaue 1. We sdlect the
contour points by searching each scanline to find the rightmost or leftmost end of a blob.

Not dl contour points sdlected by this method will belong to the convex hull. Therefore,
we need to sdlect those points that are actualy on the hull. Koller [17] proposed a convex hull
extraction method that is suitable for our purpose. The procedure isto define a convex hull
point, P,(X,,Y,), by itslocation related to its preceding point, P,(X,,y;), and following point

P3(X5,Y5)- A threshold T is used to determine the associated orientation of these three points,

where
X y, 1
Ttix, vy, 1. (6)
X, y, 1

A pogitive value of T indicates that those three points are in counter-clockwise order
aong the contour. A negative T vaue indicates that they arein clock-wise order.
Thisagorithm is used to efficiently obtain dl the points on the convex hull, as shownin

the following description:

1) If contour point P, is on the left side of the contour, T is conputed

to check whether it is positive (counter-clockwise). If so, P,is
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regarded as being on the convex hull. If not, P, does not belong to
the hull.

2) Simlarly, if P,is on the right side of the contour, T is conputed
to check its sign. Now, contrary to the above |left-side case, if T
is positive, it nmeans P, is not on the convex hull. If T is negative

(cl ockwi se), P, belongs to the hull and shoul d be retained.

Figure 2.10 shows an example where a convex hull is extracted by using the above

method.

Moving blobs for convex hull extraction

Convex Hull for one blob

Figure 2.10 Convex hull extraction example
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2.4.2 Bounding Box Extraction

To obtain scding information directly from the image rather than using explicit camera

cdibration, we exploit the known geometric relationships in the images. We do this by

congtructing a bounding box to enclose the convex hull. This bounding box is used to isolate the

area of interest in the image and is Smilar to window (or key region) processing described by

Fathy and Siya [26] and Stewart et d [27]. However, unlike window processing, we are only

interested in looking for some Smple geometric relations ingde the box.

To obtain the bounding box from the convex hull with vertices x, and y;, the agorithm, as

seeninFgure2.11, is

1)

2)

3)

4)

5)

Arrange all the x, values as an array and find the mnimum and

maxi mum

Do the same for all y, values.

The resulting box is the rectangle with vertices (counter-clockw se
order):

(mn_x;, mn_y)(max_x;,, mn_y)(mx_x;,, mx_y,;)

(mn_x;,, max_y,).

Figure 2.11 Bounding box enclosing a convex hull



This procedure is applied to each image in an image sequence, and we obtain a series of
convex hulls and bounding boxes that will be used to estimate the redl travel distance and speed,
as covered in the next chapter.

Figure 2.12 shows an example of extracting the bounding box from a convex hull.

Convex Hull for bounding box extraction

Bounding box extracted

Figure 2.12 Bounding box extraction
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3 Geometric Analysis and Speed Estimation From an | mage Sequence

The result from Chapter 2 is a series of convex hulls and bounding boxes. This chapter
describes utilizing the geometric features and this series of hulls and blobs for distance and speed
computation.

To estimate peed, we firg obtain the direction of motion of each vehicle and then
compuite the bet fit line through the centroids of the convex hulls found in a series of images and
associated with asingle vehicle. A threshold on the corrdation coefficient [28] for the centroids
is used asthe colinearity criterion to identify asingle vehicle track. The bet fit line for the
direction of trave is used to obtain the pixel length of the vehicle, and we exploit asmple
triangular relationship in the bounding box to get the pixel length of the vehicle, which isthen
used to compute the scde information in theimages. Ground truth distance is estimated by using
scale information along the direction of motion, and these distances, with the frame rate of the

video sequence, are used to estimate peed.

3.1 DIRECTIONOF MOTION: a

We assume that the vehicles make no sudden changes in directions between successve
video frames. This assumption alows usto track individua vehicles through successive frames.
Weidentify asingle vehicle track by requiring that the centroids of the convex hull be colinear in
successive frames, as shown in Figure 3.1. The linear regression corrdation coefficient r for
least square straight line fitting, as presented by Bevington [28], isthe criterion for determining
the colinearity of centroids.

From experiments, we clam that we are able to identify asingle vehiclein a succession
of imagesiif the colinearity of the centroids produces alinear regression correlation coefficient r

greater than 0.90, where

20
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n\->x Y E:t-)X L)y

SR Sy

and x, and y, are the coordinates of convex hull centroids.

()

Figure 3.1 Colinearity of convex hull centroids

3.2 GEOMETRIC RELATION INSIDE THE BOUNDING BOX

To get the scale information from the images, we exploit the triangular relationship
within the bounding box, as shown in Figure 3.2. The pixd length, L_pixel, of avehideis
estimated along the best fit line (L) indicating the direction of trave. It isestimated to be the
length of the cord dong the best fit line that intersects the bounding box.

box_ width (8)

L_ pixel T
sin &
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Figure 3.2 Triangular relation

To map the pixel length to ground truth vehicle lengths, we use the empirica vehicle
length digtribution shown in Figure 3.3 [15]. Thisdlows usto readily obtain the retio of the
physicd length, L_physical, and the pixd length, L_pixel, which isthe scae factor s,

L_ physical 9
s t =T (ft / pixel) . ©)
L_ pixel

Thiswill play akey role in the next step.

3.3 DISTANCE AND SPEED ESTIMATION

Next, we estimate the travel distance between frames and the vehicle speed using the
scae factor just obtained from the above geometric anayss.

Firg, some assumptions are made:

a) Digancetraveled by acar is defined by the displacement of its centroid.

b) Scdechangeissmooth (linear with pixd distance) dong the camerafocus.

Therefore, al scale changes form an equd difference sequence.
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c) Scaeishomogeneous (congtant) insde the car (box), so that the scale obtained from

theratio of the two lengthsis equa to the scale factor at the centroid.

Figure 3.3 Vehiclelength histogram

To obtain the physica distance of moving centers, we estimate the scae factors at each
pixel dong the travel path having anglea . To thisend, we first need to compute the total
number of pixels adong the travel path, which can be obtained by using

# of vertical pixels (20)
sin & ’

# of pixels along moving angle gt

where the number of vertica pixdsis smply the vertica pixd length between the firgt and the
last centroids.

For an image sequence with k frames, where s, isthe scae factor at the centroid of the
convex hull of the vehide of interest in the fird frame, s, isthe scae factor at the centroid of the
convex hull of the vehicle in the k-th frame, and the number of pixels dong the driving path

between these two centroids is n, we can compute the scale change per pixe, Ds, as
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TM (ft/ pixel®) . (1D
n ed)
The total distance D traversed between the imagesis then obtained by summing up the scale
factor series as
D tns, (N =L) s (ft)
o B+ skzg (12)
2

The speed is then estimated asthe ratio of the interframe travel distance and the known frame
rate.

The materid just presented isthefirg published dgorithm for an estimate of single
vehicde speed using agatistica vehicle length and an uncdibrated camera. The adgorithm
creates scae information on the fly from information contained in the image and does not require
cdibration markersin the physica environment.

The dgorithm presented hereis validated againgt ground truth measurements in the next

chapter.



4 Field Trialsand Discussions

4.1 FIELD TRIALSM ETHODOLOGY

To test our agorithm, we compared the distance estimates (caled estimated distance)
obtained with our dynamic cdibration technique with ground truth measurements on the
freeway. Becausethetravd timeintervd is st by the inter-frame time, the only unknown isthe
ground truth travel distance. Field trias used both the distance between and the size of the center

gripes. Both these measurements are published by WSDOT, as seen in Appendix A.

4.2 EXPERIMENTAL RESULTS

Through extensive trids we tested the presented agorithm under different lighting
conditions. Egtimation error is defined as the difference of the ground truth distance and the
estimated distance divided by the ground truth distance. Figure 4.1 shows the estimation error
vaues and estimation error histogram for 60 image sequences. As suggested by Worrdl et d
[9], the mean car length, L, of 25.63 ft. is used in scale factor computations. The average

estimation error for these 60 sequencesis 8.7 percent.

Figure4.1 Errorsand error histogram for 60 image sequences
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Experiments suggested that when the area of shadow created by avehicleislarger than
two thirds of the vehicle areain the image, the estimation errors of our agorithm are
unacceptable. We cdll this Stuation the severe shadow effect. Twenty such sequences were
tested. The estimation error histogram is shown in Figure 4.2. Most produced estimation errors
over 15 percent, some even over 25 percent. A typical image sequence with serious shadow
effectsis shownin Figure 4.3. Figure 4.4 shows two moving edge images for two framesin this
sequence, where many moving edges actualy represent the edges of shadows rather than those
of the origind vehicles. Initid andysisindicated that shadows will affect the rdiability of the
moving edge detection, the convex hull extraction, and, findly, the scaling computation, thereby
digtorting the distance and speed estimation. Without a priori knowledge of shadow shapes and

directions, the effect of shadows cannot easily be included in this agorithm.

Figure 4.2 Errorsand error histogram for 20 image sequences with severe shadow effects

Quantitetive analysis of shadow effects is one focus for future improvements to the

dgorithm.
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Figure 4.3 A typica sequence with severe shadow effects
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Moving edgesfor the first frame

Moving edges for the fourth frame

Figure4.4 Moving edges

4.3 ERROR ANALYSIS

From Worrdl et d [9], the random variable vehicle length, L_physical (L isused below
for smplicity), can be expressed asits expected vaue L., (mean) and some deviation DL, thet is
LtL, = . (13)
For an image sequence with k frames, suppose L, isthe car pixd length in thefirs frame

and L, isthe car pixd length in the k-th frame. Congder acase in which the cars are moving
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away from the camera, so that the scale factor increases with the distance from the camera. (The
andyssisamilar for acasein which the cars are moving toward the camera) Combining
equations (9) and (12) gives us the estimated distance D,,,,

Dn + E(L_m @i)
2L L, 14
+ |_m ﬂ(i WL)
2 L

1 k
Consdering length deviation in equation (13) gives us the deviated disance D, as

o, # (1, i) Ly

Lo L (15)

Let e be the absolute error of distance measurement, and thuse = D, - D,,,. Combining equations
(14) and (15) gives the mean of error e,
Efe}t 2 (=) EQH),
2 L, L
(16)
where E{*} isthe expected vaue operator, and the variance, Var{ e}, is
var{e} t [2 (= =) var{#}.
2L, L
(17)
Equations (16) and (17) reved that the length deviation (L) directly affectsthe
measurement error, since the pixel number n and pixe lengths L, and L, are uniquely determined

for a goecific image sequence with k frames.

4.4 POSSIBLE SYSTEM EXTENSIONS
The speed information obtained from this work can be used directly for many
gpplications, such astraffic congestion detection. It is aso worthwhile to note that with some

modifications, our method can be reedily extended to other traffic andys's, including incident
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detection, traffic modd verification, and travel time estimation. The techniques introduced in
this report can be used as a basis for developing generd- purpose, advanced intelligent traffic
survelllance systems. For example, combined with character pattern recognition process, our
method can be extended to recognize the vehicle license plate number, which has recently

become an active research area.
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5 Conclusion

There are many chdlenging problemsin studying red traffic scenes within acomplex
background. In this report, efficient image processing techniques are applied to traffic andyss
to estimate travel speed from image sequences of moving vehicles. Smple geometric reations
are obtained directly from the image itself and are used to deal with real-world problems without
explicit camera cdibration. Furthermore, the techniques presented are vaidated against ground
truth by fidd trids. Error andyssisaso givenin detal. The car length digribution is shown to
be a key factor in the accuracy of speed sensing.

Some problems remain to be solved, including the effect of shadows and occlusion of
vehicles

Asareault of the work presented here, a manuscript has been submitted to the IEEE
Intelligent Transportation Systems Council for presentation at ITSC 99, a peer reviewed

conference. A copy of this manuscript appears in Appendix B.
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Appendix B

Copy of manuscript submitted to |EEE Intelligent Transportation Systems Council for

presentation at ITSC 99.
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